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AN ACCELERATION OF THE NIEDERREITER FACTORIZATION 
ALGORITHM IN CHARACTERISTIC 2 

RAINER GOTTFERT 

ABSTRACT. A new deterministic factorization algorithm for polynomials over 
finite fields was recently developed by Niederreiter. The bottleneck in this al- 
gorithm is the last stage in which the irreducible factors of the polynomial are 
derived from the solutions of a system of linear equations. In this paper, we 
consider finite fields of characteristic 2, and we show that in this case there is 
a more efficient approach to the last stage of the Niederreiter algorithm, which 
speeds up the algorithm considerably. 

1. INTRODUCTION AND BACKGROUND 

A new factorization algorithm for polynomials over finite prime fields was 
recently developed by Niederreiter [9] and soon generalized to fields of prime 
characteristic [10, 11]. For further work on this algorithm we refer to Fleisch- 
mann [3], Lee and Vanstone [5], Miller [8], and Niederreiter and Gottfert [12]. 
This paper deals primarily with the important special case of the Niederreiter 
algorithm in which the underlying field is a finite field of characteristic 2. But 
for the present, let F be an arbitrary perfect field of characteristic 2. 

Let f E F[x] be a monic polynomial of degree deg(f) = d > 1 with its 
canonical factorization 
(1) f= ge 

1...gmm 

over F, i.e., gl, ... , gm are distinct monic irreducible polynomials in F[x] 
and el, ..., em are positive integers. The polynomial f is given as 

(2) f(x) = fdxd + fd-lxd l + + fix + fo E F[x] 

with fd = 1. To factor f means to determine the representation (1) from the 
representation (2). 

The core of the characteristic 2 version of the Niederreiter algorithm is the 
differential equation 

(3) (fh)' = h2, 

where f E F[x] is the given polynomial to be factored and h E F[x] an 
unknown polynomial to be determined. If h1 and h2 are polynomials in F[x] 
that satisfy (3), then so does h1 + h2. Therefore, the solutions h of (3) form a 
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linear subspace L(f) of the vector space F[x] over the binary field IF2. In [ 10], 
Niederreiter shows that the solutions of the differential equation (3) are given 
exactly by the 2m polynomials h of the form 

(4) h = fb', 

where b E F[x] is a monic factor of g1 ... gm , so that the 1F2-vector space 
L(f) has dimension m. For h E L(f) it follows from (4) that 

f ~~f gcd(f, h) = b'gcd(b, b') = b 

and hence 

f -b 
gcd(f, h) 

In view of these facts, two strategies to factor f suggest themselves. 
In the first strategy, a solution polynomial h of (3) with h :$ 0 and h $ 

is determined. For this polynomial, gcd(f, h) is a nontrivial factor of f. 
One then applies the factorization algorithm to this nontrivial factor and its 
complementary factor of f and iterates. 

In the second strategy, all 2m solution polynomials h of (3) are calculated. 
The corresponding polynomials f/ gcd(f, h) then produce all 2m monic fac- 
tors b of the squarefree part gl ... gm of f and, in particular, all irreducible 
factors of f. 

Although only the first strategy leads to a polynomial-time algorithm, the sec- 
ond strategy is more efficient in most practical cases. In this paper we develop 
a third strategy. We shall show that the m polynomials of any basis of L(f) 
are already sufficient to produce the irreducible factors gl , ... , gm of f and 
with that the complete canonical factorization (1) of f. Our method leads to 
a polynomial-time algorithm, which is also very efficient for polynomials f of 
small degree. In contrast to the 2m greatest common divisor calculations neces- 
sary in the second strategy, our method requires at most m2 gcd calculations. 

An important part of the Niederreiter algorithm is the actual computation 
of the polynomials h E F[x] which satisfy (3), or, to put it differently, the 
determination of a basis of L (f) . We shall discuss this matter only very briefly 
here and refer to the original papers [9, 10, 11]. 

It follows from (3) or (4) that any polynomial h E F[x] satisfying (3) must 
have degree < d = deg(f), so that we can set h(x) = yo + yIx +... +Yd-l xd-l 

with all yj E F. Since F has characteristic 2, the first derivative (fh)' is 
always a polynomial in x2, and h2 is also a polynomial in x2 for all h E F[x]. 
Thus, (3) holds if and only if the coefficients of x2j, 0 < j < d - 1, agree on 
both sides. The comparison of coefficients yields a system of d equations for 
the unknowns yO, . . ., Yd- e F . This system of equations has the form 

(5) Nt(f) (yoe mti N(f )T = (y2 d ** x Ydva)T 

where the Niederreiter matrix N(f ) is a d x d matrix over F, obtained from 
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the coefficients of the polynomial f. If f is given by (2), then 

' f0 fo 0 O O O ... 00 0 0 
A3 f2 fl fo ? ? ? ... 0 ? ? ? 

As 4 A3 f2 fi fo ? ... ? ? ? ? 
(6) N (f)= ..................................................... 

0 0 0 0 0 0 ? ... ? fd fd -I fd 2 
K O O O O O O O ... O ? ? td I 

When the underlying perfect field F of characteristic 2 actually is a finite 
field of characteristic 2, then the system (5) can be turned into a homogeneous 
system of linear equations over the binary field F2. 

If F = F2, we have y= Y for all j, and the system (5) is already linear. 
In this case, we can write (5) in the form 

(7) (N(f) - Id)hT = 0, 

with Id the d x d identity matrix and h = (yo, . .. , Yd- 1)d 

If F = Fq is a finite field of order q = 21 > 2, a normal basis B = 

{a, &x2, a4, ... , aq/} of Fq over F2 is used (see [10, 11]) to transform (5) 
into a dt x dt system of linear equations 

(8) Kq(f, B)HT = 0 

over F2. Here, Kq (f, B) is a dt x dt matrix over F2, and the solution vector 
H E Fdt determines (Yo, ..., Yd-l) E Fd of (5). 

Since the dimension of the F2-vector space L(f) is m, and since (3) is 
equivalent to (7) or (8), respectively, depending on whether F = F2 or F = Fq, 
the number m of distinct monic irreducible factors of f in F[x] is given by 
m = d - rank(N(f) - Id) or m = dt - rank(Kq(f, B)), respectively. 

2. THE REFINEMENT OF THE NIEDERREITER ALGORITHM 

FOR CHARACTERISTIC 2 

Let F again be an arbitrary perfect field of characteristic 2. Given a basis 
{hl, ... , hm} of L(f), we form the polynomials b1, ... , bm by setting bi = 
f/gcd(f, hi) for i = 1, ... , m. It follows from (4) that the bi E F[x] are 
monic squarefree factors of f . By calculating gcd's, further monic squarefree 
factors of f are created from the polynomials b1, ..., bm. These factors are 
listed in rows in a table of at most m rows. 

The first row of the table consists solely of the polynomial b, . The second 
row consists of two or three polynomials, namely of the nonconstant polynomi- 
als among 

gcd(b2 b ) , bi b2 gcd(2, 1),gcd(b2 ,bi)' gcd(b2, bi)' 

In the general step, the polynomials of the kth row, 1 < k < m, are derived 
from bk and the polynomials of the (k - I)st row in the following manner: Let 
r, ... , r, be the polynomials in the (k - 1)st row. Compute dj = gcd(bk, rj) 
for j = 1, . .. , s . The kth row is then made up of the nonconstant polynomials 
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in the list 

(9) d r 
r 

. ds r d bk 
di ~~ds di ... ds 

It is immediate that the polynomial array constructed in this way has the 
following properties: 

(i) The polynomials in any single row are pairwise relatively prime monic 
squarefree factors of f; 

(ii) The polynomial bk occurs in the kth row, either in its original form or 
split up into some nontrivial factors; 

(iii) Every polynomial in the (k - 1)st row also occurs in the kth row, either 
in its original form or split up into two nontrivial factors. 

It is clear from property (i) that the procedure can (and should) be stopped 
as soon as a row containing m polynomials has been reached. For, the m 
polynomials of that row must necessarily be the polynomials g1, ... , gm, the 
monic irreducible factors of f. 

Usually, the kth row will contain more polynomials than the (k - 1)st, but 
that is not guaranteed. For instance, when bk happens to be identical with a 
polynomial rj of the (k - 1)st row, both rows will contain exactly the same 
polynomials. However, the procedure always succeeds, i.e., leads to a row with 
m polynomials, as is seen from the following theorem. 

Theorem 1. At the latest, the mth row contains the polynomials g1, ..., gm 

Proof. According to (4), for each i = 1, ..., m, the polynomial (f/gi)g1' is 
a solution of the differential equation (3), i.e., an element of L(f). Since 
{hli hm} is a basis of L(f), we have 

e gi =alh+ ++amhm forsome a1, ...,am eF2 

Dividing both sides by f and using (4), we get 

gi bi bm 

from which we can see that at least one of the polynomials b, ...I , bm must 
be divisible by gj. This fact together with (i), (ii), and (iii) implies that the 
product of all polynomials in the mth row is equal to g1 ... gm . 

Now let us assume to the contrary that the mth row contains fewer than m 
polynomials. Then at least one polynomial in the mth row must be divisible by 
two different gj 's, say by g1 and g2 . We claim that this implies that each of the 
polynomials bk, 1 < k < m, is either divisible by both g1 and g2 or relatively 
prime to g1 g2 . For, suppose some bk were divisible by only one of the two 
polynomials g1 or g2, but not by the other; then the kth row would contain 
a polynomial with the same property. But this, because of (iii), contradicts the 
appearance of a polynomial in the last row which is a multiple of gl g2 . 

By the argument at the beginning of the proof, we have, in particular, 

(10) g, =Al" + +fmbm forsuitable fI, ..,fimEF2. 
g1 b1 bm 
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Now, for an arbitrary monic factor b E F[x] of g1 ... g,m, it follows from the 
product rule that 

( l l ) ~b _E Jy 

where the sum is extended over all gj 's which divide b . Using (1 1), we see that 
the right-hand side of (10) can be viewed as a sum of terms gjlgjg. Because of 
the left-hand side of (10), the term gl/gl must occur an odd number of times 
in this sum, whereas all the other terms-in particular g2/g2-occur an even 
number of times. But this contradicts the fact that each polynomial bk is a 
multiple of g1 g2 or relatively prime to g1 g2. ? 

The Niederreiter algorithm for binary polynomials now takes the following 
form: Let f E F2[x] be the polynomial to be factored of degree d > 1 . 
Step 1. Set up the binary d x d matrix N(f) - Id, where N(f) is the Nieder- 
reiter matrix corresponding to f (see (6)) and Id is the d x d identity matrix 
over F2. By a rank computation, we determine the number m of distinct 
irreducible factors of f in 1F2[x], namely 

m = d - rank(N(f) - Id). 

Step 2. Solve the homogeneous system of linear equations 

(12) (N(f)-Id)hT = O. 

Each solution vector h = (yo y, ... Yd-l) E 1F7d of (12) gives rise to a binary 
polynomial Yo + YI x + + Yd- 1xd -1. From m arbitrary linearly independent 
(over F2) solution vectors hI, . .. , hm of (12), in this manner, m polynomials 
h, ... , hm E F2[x] are obtained. 

Step 3. Compute bl, ..., bm E IF2[x] by 

bisg= dJihi) for i = 1, ...,m. 

Step 4. Set up a table of polynomials consisting of at most m rows as follows. 
The first row contains the polynomial b1 . The other rows are defined induc- 
tively. If the (k - 1)st row contains the nonconstant polynomials rl, ...r, 

( 1 < k < m, 1 < s < m ), then compute the polynomials 

(13) di r, d ds, rs cs+1 

with cl = bk, dj = gcd(cj, rj) and cj+l = cj/dj for j = 1, ...,s. Remove 
(if any) all constant polynomials from the list (13); the remaining polynomials 
form the kth row. This process is continued until a row with m nonconstant 
polynomials is obtained. This may be the mth row or an earlier one. The 
polynomials of that row are then the distinct irreducible factors of f in F2[x]. 

We note that the method described in Step 4 to compute the kth row from 
the (k - 1)st is equivalent to the method described earlier, i.e., the polynomials 
dj in (13) are the same as in (9), and cs+1 = bk/(dl ds). 

If the underlying field F is the finite field of order q = 2t > 2, in the 
factorization algorithm of Niederreiter one first has to set up the dt x dt matrix 
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Kq(f, B) over F2, where d > 1 is again the degree of f E F[x] . The number 
m of distinct monic irreducible factors of f in F[x] is, as mentioned above, 
obtained from m = dt - rank(Kq(f, B)). Next, the homogeneous system of 
linear equations (8) over F2 has to be solved. Any m linearly independent (over 
F2 ) solution vectors H Ez Fdt of (8) yield the polynomials h, ..., hmC E F[x]. 
One now has to apply the method described in Steps 3 and 4 of the binary 
Niederreiter algorithm to h, .. , hm, which yields all monic irreducible factors 
of f in F[x]. 

If the underlying perfect field F of characteristic 2 is infinite, one has to 
solve the nonlinear system of equations (5) over F. Once a basis of L(f) is 
fuund, the method described in Steps 3 and 4 above can again be used to get 
all monic irreducible factors of f in F[x]. 

3. COMPLEXITY ANALYSIS 

Throughout this section the underlying field is a finite field Fq of order q - 

2t > 2. Suppose m polynomials hl, ... , hm forming a basis of L(f) have 
already been determined. In order to produce from these the monic irreducible 
factors gl, ... , gm of f in the manner described in ?2, we need only to 
compute gcd's and perform divisions, in either case of polynomials in qF[x] 
of degree < d = deg(f). A rough estimation shows that at most m2 gcd's 
have to be calculated and at most m2 divisions have to be performed. 

The gcd of two polynomials in Fq [xI of degree < d can be calculated with 
O(Mq (d) log d) arithmetic operations in lFq, where Mq (d) is the arithmetic 
complexity of multiplying two polynomials in qF[xI of degree < d (see [1, 
p. 308, Theorem 8.19]). The arithmetic complexity of dividing two polyno- 
mials in qF[x] of degree < d has the same order of magnitude as Mq(d) 
(see [1, p. 288, Theorem 8.7]). Therefore, the computation of the polynomi- 
als g1, . . . , gm from the polynomials h1 I , hm requires O(m2Mq (d) log d) 
arithmetic operations in lFq . The function Mq (d) is O(d (log d) log log d) ac- 
cording to Cantor and Kaltofen [2], and a somewhat better estimation may be 
derived from Grigoriev [4] or Lempel et al. [6]. 

We now estimate the total cost of the binary Niederreiter algorithm, that is, 
for the case q = 2. Since the matrix N(f) can be read off immediately from the 
coefficients of the polynomial f, there is no setup cost for the matrix N(f) - Id 
in (12). The system (12) itself, being a d x d system of linear equations over 
F2, can be solved with O(dW) arithmetic operations in F2, where a) < 2.38 
is the exponent of fast matrix multiplication. The cost of Steps 3 and 4 of the 
algorithm has already been estimated above. Hence, the following theorem is 
proved. 

Theorem 2. The total cost of calculating all m irreducible factors of a binary 
polynomial of degree d by the Niederreiter algorithm is O(dW + m2M2 (d) log d) 
arithmetic operations in F2, where wi < 2.38 is the exponent of fast matrix 
multiplication and M2(d) is the arithmetic complexity of multiplying two binary 
polynomials of degree < d. 

There is some hope for the binary Niederreiter algorithm to be further ac- 
celerated, owing to the special form of the matrix N(f). In [10] Niederreiter 
posed the problem of developing a method for solving (12) with 0(d2) arith- 
metic operations in F2. If this succeeded, the binary Niederreiter algorithm 



THE NIEDERREITER FACTORIZATION ALGORITHM IN CHARACTERISTIC 2 837 

would be an 0(d2) algorithm for random polynomials, since the average order 
of magnitude of the number m of distinct irreducible factors of f is logd 
according to [7, pp. 239-241]. 

If the underlying field Fq is of order q = 21 > 2, one first of all has to set up 
the matrix Kq (f, B). It was shown in [10] that the setup cost for the matrix 
Kq (f, B) is 0(dt3) arithmetic operations in the binary field F2. The dt x dt 
system of linear equations (8) can be solved with 0(dwtw) arithmetic operations 
in the binary field IF2, after which the polynomials hl, ... , hm E Fq[x] are 
available. We summarize the total cost of computation in the following theorem. 

Theorem 3. The total cost of calculating all m monic irreducible factors of 
a polynomial in Fq[xJ, q = 2t > 2, of degree d by the Niederreiter al- 
gorithm is 0(dt3 + dOtw) arithmetic operations in the binary field F2 plus 
0(m2Mq(d)logd) arithmetic operations in Fq. Here a) < 2.38 is the expo- 
nent offast matrix multiplication and Mq(d) is the arithmetic complexity of 
multiplying two polynomials in Fq[xJ of degree < d. 

In order to express the total cost of computation in terms of arithmetic op- 
erations in the binary field IF2, we use the fact that any arithmetic operation in 
the finite field of order 2t can be accomplished with at most 0(t(log t) log log t) 
arithmetic operations in F2. The latter follows from the theorem in Cantor 
and Kaltofen [2]. Using also the estimation for Mq(d) given earlier, we can 
restate Theorem 3 in the following manner. 

Corollary. With the notation in Theorem 3, the complexity of the Niederreiter 
algorithm is 

0(dt3 + dOtO + m2d(log d)2(loglog d)t(log t) loglog t) 

arithmetic operations in the binary field F2 . In particular, the algorithm runs in 
polynomial time. 

Example. We illustrate the binary Niederreiter algorithm with the polynomial 
f(x)- XI1 +X8 + x5 + X4 + I E F2[X]. The matrix N(f) is 

0 1 0 0 0 0 0 0 0 0 0 
0 O 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 0 0 0 0 0 
O 0 1 1 0 0 0 1 0 0 0 
0 1 0 0 1 1 0 0 0 1 0 

N(f)= 0 0 1 0 0 1 1 0 0 0 
O 0 1 0 0 1 0 0 1 1 0 
0 0 O 0 1 0 0 1 0 0 1 
0 0 0 0 O 0 1 0 0 1 0 
0 0 0 0 0 0 O 0 1 0 0 

0 0 0 0 0 0 0 0 0 O 1 

By means of elementary row operations, we reduce the matrix N(f) - III to 
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echelon form. This yields the matrix 

11 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 
O 0 1 0 0 1 0 0 0 0 0 
0 O 0 1 0 1 0 0 0 1 0 
0 0 O 0 1 0 0 0 0 0 1 

A= 0 0 0 0 0 1 1 1 0 0 0 
0 0 0 0 O 0 1 0 1 1 0 
0 0 0 0 0 0 O 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
00 0 0 0 0 0 0 0 0 0 

We now have rank(N(f) - I,,) = rank(A) = 8, so that the canonical factor- 
ization of f over F2 contains 11 - 8 = 3 distinct irreducible factors. Since 
we have used only elementary row operations, the matrices N(f) - III and A 
have the same null space. Therefore, we can solve the linear system AhT = 0 
instead of (12). This yields three linearly independent solution vectors 

hi =(0, 0,0 ,0, 1,0,0,0,0,0, 1), 

h2 = (1, 1,0 , 1,0 ,0 ,0 ,0 , 1, 1,0 ), 

h3= (0,0, 1,,0, 1,0, 1, 1, 1,0 ). 

The corresponding polynomials are given by 

h1 (x) = x10+x4, h2(x) = X9+X8+x3+x+l, h3(x) = X9+X8+X7+X5+X2, 

from which we obtain the polynomials 

b1(x) = x7 +x5 +x4 +x2 +1, b2(x) = X2+x +1, b3(x) = x4 +x3 + 1. 

The table of polynomials in Step 4 is 

lstrow: x7+x5 +x4 +x2+ 1 

2nd row: x7 +x5 +X4 +x2 + 1 X2 + x + 1 
3rdrow: x4+x3+ 1, x3+X2+ 1, x2+X+ 1 

Since deg(f) = 11 the canonical factorization of f over F2 must be 

f(x) = (x4 + x3 + l)(X3 +X2 + 1)(X2 +X + 1)2. 
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